
メイン | 簡易ヘッドライン |
![]() |
![]() ![]() |

現在データベースには 477 件のデータが登録されています。

はじめに
Windows update の不具合を修理した

Windows 10 Version 2004 の機能更新プログラム
「Windows 10 Version 2004 の機能更新プログラム」が終了していた。
Windows Update を実施しても、エラーが続出し、アップデートができなかった。
Windows 10 2022 更新|バージョン 22H2
Windows 10 2022 更新|バージョン 22H2 を手動でダウンロード
Windows 10 2022 更新|バージョン 22H2 を手動でインストール

考察
アップデートに不具合のあるパソコンを修理できた。
たぶん、あまり使用していないパソコンで、長年の間アップデートがされてこなかったと思われる。
途中のアップデートの終了などで、アップデートの互換性に不具合が生じたものとみられる。
強制的に最新のアップデートをインストールすることにより、アップデートができた。
Windows11のアップデートも施し、パソコン修理を終了した。

はじめに
hp 14s-fq2 の液晶交換を依頼された

液晶準備

液晶交換
モニター下部のプラスチック部品を外す

モニター前面のプラスチック枠を外す

新品液晶との比較

液晶を外す
液晶は、両面テープで固定されています。
かなり強力に接続されています。
今回は、モニター背面から ドライヤーで温めながら 、ゆっくり外しました


液晶接続コネクタを外す



新しい液晶モニタの確認

新品液晶モニタの交換後

考察
液晶モニタの交換を実施した。
通常、ノートパソコンの液晶は、モニタ固定の金属部分にネジ固定してあるものが多い。
今回は、両面テープで固定されていた。
ドライヤーで温めながら、両面テープをはがすと、剥がしやすくなった。
かなり両面テープの粘着力は強いので、液晶を割らないように、ゆっくり力強く剥がす必要があった。
無事にモニタ液晶交換が終了した。


はじめに
Pika1.0を用いることで、ショート動画を生成できる。
今回は、ホテルのプロモーションビデオ(PV)を制作してみる。
参考サイト
【徹底解説!!】Pika1.0の機能・使い方を解説!PVも作ってみました!
PVの企画・構成
PVの企画・構成は、ChatGPTで生成した。( https://chat.openai.com )
質問
あなたは優秀なクリエイターです。
以下の条件を踏まえたうえで、最高のプロモーションビデオの台本を考えてください。
#条件
・テーマ:ビーチリゾートで贅沢にくつろぐ
・動画の長さ:30秒程度
・内容:ビーチで寛ぐ、マリンスポーツを楽しむ、おしゃれな食事やショッピングを楽しむ、豪華でエレガントな客室などの要素を盛り込んでください。
#出力形式
・動画のシーンの説明
・BGMのイメージ
ChatGPT
動画のシーンの説明:
オープニング (0-3秒):
美しい海岸線の風景が広がり、波が優雅に打ち寄せる。太陽が輝く中で、タイトルが浮かび上がる。
ビーチで寛ぐ (4-10秒):
ホワイトサンドのビーチで、リゾートのシンボルとなるロゴの入ったビーチチェアに座るカップル。カメラは海をバックに、二人が笑顔でくつろぐ様子を捉える。
マリンスポーツを楽しむ (11-17秒):
続いて、パラセーリングやジェットスキーに興じる若いグループ。速いカットでエキサイティングな瞬間をキャッチ。
おしゃれな食事やショッピング (18-24秒):
オーシャンフロントのレストランで、シェフが美味しい料理を調理。カップルがロマンティックな夕食を楽しむ様子。その後、リゾート内のショップでおしゃれな商品を手に入れる場面。
豪華でエレガントな客室 (25-30秒):
豪華なインテリアを備えた客室へ。カメラが部屋のドアを開け、最後にリゾートの美しい夜景を背景に、カップルがくつろぐ様子を捉え、最後にロゴと共に「贅沢な休暇はここで始まる」と表示。
BGMのイメージ:
明るく陽気でエネルギッシュなビーチサウンド。ギターのリフと波の音が交わり、ビデオ全体に軽快でリラックスした雰囲気を添えます。また、各シーンに合わせてテンポやムードが変化するようなアレンジがポイントです。
英語で翻訳したものを、使用していきます。
Pika1.0
Pika: https://pika.art
※使用方法は、今回は割愛させていただきます。

オープニング (0-3秒):
ビーチで寛ぐ (4-10秒):
マリンスポーツを楽しむ (11-17秒):
おしゃれな食事やショッピング (18-24秒):
豪華でエレガントな客室 (25-30秒):
SunoAI
SunoAI: https://app.suno.ai
※使用方法は、今回は割愛させていただきます。
BGM:


ビデオ編集
VideoProc Vlogger

効果音ラボ: https://soundeffect-lab.info/

ホテルCM【PV完成】
考察
ホテルのプロモーションビデオを制作してみた。
- 動画:Pika1.0
- 音楽:SunoAI
- 編集:VideoProc Vlogger
Pika1.0の動画が非常に使いやすかった。
なおかつ、クオリティーの高さに驚かされた。
SunoAIの曲も、いつもながら圧倒された素敵な曲が生成できた。
編集技術を上げて、動画制作のレベルも向上させていきたい。

はじめに
テキスト を入力すれば、ボーカル入りの楽曲を生成してくれる「suno ai」サイトを発見。
それも、日本語のミュージックを作成可能とのこと。
早速、作成してみた。
参考サイト
【衝撃】日本語で歌う??最新の音楽生成AIのクオリティが高すぎる【suno ai】
Suno AIで日本語のオリジナルの曲の作り方

BeatBotのText to MusicとCanvaを活用して無料でMusicVideoを作成してみましょう!!(Canva)

ChatGPTの活用
歌詞
(質問)
「Dreamer」の歌を作りたい。もがき、苦しんだ若かりし頃。夢をあきらめず、夢に向かい走り続けた。大切なものは近くにあった。家族、知人、そして自分。気づき始めた今だからこそ、夢にむかって走り続けたい。自分を信じたい。歌を歌い続けたい。このような歌詞を考えてください
(ChatGPT)
(Verse 1)
若き心 もがき続けた 闇夜の中
迷子になりながらも 夢の星を見上げ
泣きながらも 立ち上がり 前へ進む
手に触れそうな 夢のかけらを見つけ
(Pre-Chorus)
傷ついた日々も 乗り越えて
大切な人たちが そばにいてくれた
(Chorus)
Dreamer 夢を諦めずに
闘い続けた 過去の自分に感謝をこめて
Dreamer 大切なものは
今ここにある 家族と友達と そして自分自身
(Verse 2)
追い求めた光が 心を照らし
苦しい日々も 笑顔に変わった
夢の道に立ち 風を感じながら
今こそ進む時 心の中で誓う
(Pre-Chorus)
迷いながらも 諦めないで
自分を信じて 夢に向かって
(Chorus)
Dreamer 夢を諦めずに
闘い続けた 過去の自分に感謝をこめて
Dreamer 大切なものは
今ここにある 家族と友達と そして自分自身
(Bridge)
自分を見つけて 信じる力
遠くの未来へ 飛び立つ準備ができてる
(Chorus)
Dreamer 夢を諦めずに
闘い続けた 過去の自分に感謝をこめて
Dreamer 大切なものは
今ここにある 家族と友達と そして自分自身
(Outro)
歌い続けよう 心のメロディ
夢を追いかけて 未来へと続く
Dreamer 今ここにいて
自分を信じて 歩き出す 新たな旅へ

タイトル
(質問)
この曲のタイトルを考えてください
(ChatGPT)
「Eternal Dreamer」

suno ai の活用
suno ai: https://app.suno.ai/create/
・Custom Mode:Onにする
・Lyrics:歌詞を挿入
・Style of Music:Pop Japanese (※お好きな音楽に変えてください)
・Title:タイトルを挿入
「 Create 」ボタンをクリックすると音楽が生成されます

目的のミュージックを下記のようにダウンロードする(右クリック)
・Download Video:動画付き
・Download Audio:音源のみ

Canvaの活用
Canva: https://www.canva.com/
・マジック生成で歌詞に合う画像を生成
・歌詞2行程度にわけて、動画を分割
・動画への画像入れ込み終了後、suno aiで生成した音源を挿入
・歌詞に合わせて、動画の時間を調整

完成動画
「Eternal Dreamer」
考察
AIのみでミュージックビデオまで制作できた。
日本語の曲作りができた。
女性のボーカルも心に響く歌声だった。
もう少し深掘りして、ミュージックビデオを制作したくなってきた。

はじめに
Stable Video Diffusion(SVD) は、Stability AIが開発したImage2Videoモデルの一種で、 画像から動画を生成できるAIモデル です。
2023年11月22日に発表されました。SVDは、研究目的のみで利用可能で、画像から短いクリップを生成する2つの 最新AIモデル(SVDとSVD-XT) が含まれています。
単一画像からのマルチビュー合成など、さまざまなビデオアプリケーションに適応できるとされています。
Stable Diffusionは、テキストや画像プロンプトから写真のようにリアルな独自の画像を生成する生成型人工知能(生成系AI)モデルです。
画像以外にも、 モデルを使用して動画やアニメーションを作成することもできます 。
参考サイト
(Comfy UIを使わない) stable video diffusion webuiのローカル環境構築
準備
モデルのダウンロード
svd: https://huggingface.co/stabilityai/stable-video-diffusion-img2vid/tree/main 9.5GB(14フレームで学習/14フレームを生成できる?)
svd-xt: https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/tree/main 9.5GB(25フレームで学習/25フレームを生成できる?)
※とりあえず、 svd-xt のみ ダウンロードするといいかなと思います。
ファイルのインストール
Cドライブ直下に「stable-video-diffusion」フォルダ作成

「stable-video-diffusion」フォルダ内に入り、コマンドプロンプトを起動(タスクバーにcmdと打ってエンター)

Generative-modelsのGithubページ: https://github.com/Stability-AI/generative-models
Generative-modelsをクローン
git clone https://github.com/Stability-AI/generative-models.git

C:\stable-video-diffusion\generative-models\scripts\demo フォルダ内、「 streamlit_helpers.py 」ファイルの編集
※61行目を False から True へ変更

C:\stable-video-diffusion\generative-models\scripts\demo フォルダ内、「 video_sampling.py 」ファイルの移動
「 video_sampling.py 」ファイルを、C:\stable-video-diffusion\generative-modelsへ移動

C:\stable-video-diffusion\generative-modelsに、「 checkpoints 」フォルダ作成

C:\stable-video-diffusion\generative-models\checkpointsに、インストールしたモデルを移動する。
( svd-xt
、または、 svd ファイルのみでも大丈夫です。)

C:\stable-video-diffusion\generative-models\requirementsフォルダ内、「 pt2.txt 」ファイルの編集
34行目 「triton==2.0.0」を削除

必要なファイルのインストール(コマンドプロンプト)
C:\stable-video-diffusion\generative-modelsへ、移動する。
タスクバーにて、cmdと打ち込み、エンターでコマンドプロンプトを立ち上げる。
#仮想環境venv
python -m venv venv

#仮想環境を活性化
venv\Scripts\activate

#pipアップグレード
python -m pip install --upgrade pip
Windowsに対応した 「triton==2.0.0」 をインストール
pip install https://huggingface.co/r4ziel/xformers_pre_built/resolve/main/triton-2.0.0-cp310-cp310-win_amd64.whl

#PyTorchインストール
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118

#requirementsフォルダ内のパッケージのインストール
pip install -r requirements/pt2.txt

#残りのパッケージのインストール
pip install .

起動
起動コマンド
streamlit run video_sampling.py

Web画面
※Model Version で 「 svd_xt 」を選択

2回目以降
1. C:\stable-video-diffusion\generative-models でコマンドプロンプト(cmd)
2. venv\Scripts\activate
3. streamlit run video_sampling.py
「 Load Model 」にチェック!

Stable diffusion で画像作成
※W:1024 H:512 (画像サイズは、 64の倍数 )
※プロンプト:a dog, solo, runnig, realistic, best quality,

※使用する画像

stable video diffusionに、画像をドラッグ

画像をドラッグ後

デフォルトの設定
・サイズ:512×1024
・25フレーム
・fps:6フレーム/秒 (※3?30フレーム)
※約4秒の動画
画面下の「 Sample 」ボタンをクリック! ( 動画生成が始まります )

C:\stable-video-diffusion\generative-models\outputs\demo\vid\svd_xt\samples 以下に動画が生成されています。

生成された動画
考察
Stable Diffusionでは、背景や衣服などの一貫性に欠けるところがあったが、stable video diffusionでは、見事に一貫性が保たれている。
今回の犬のように、まばたきなども自動で生成される。
まだまだサンプル(開発途中)のため、これからが楽しみである。
- Video Motion Bucket
デフォルトは127。この値を小さくすると動きが遅くなる - Video Augmentation Level
デフォルトは0。大きくするとモーション(運動量?)が増える
-
fps
: 生成されたビデオの 1 秒あたりのフレーム数。 -
motion_bucket_id
: 生成されたビデオに使用するモーション バケット ID。これを使用して、生成されたビデオの動きを制御できます。モーション バケット ID を増やすと、生成されるビデオのモーションが増加します。 -
noise_aug_strength
: コンディショニング画像に追加されるノイズの量。値が高くなるほど、ビデオは調整画像に似なくなります。この値を増やすと、生成されるビデオのモーションも増加します。


はじめに
JAまつりに行ってきた。
令和5年12月9日/10日 in JA岩井

JAまつり




はじめに
インターネットを見ていると、ChatGPTとずんだもんが音声で会話している動画を見かける時がある。
今回は、Pythonを使用して、ずんだもんと音声会話ができるプログラムを考案してみる。

参考サイト
[python] ChatGPT APIを使ってレスポンスが高速な音声アシスタントを作る

VOICEVOXをpythonから遊ぶメモ

準備
VOICEVOXをインストール
VOICEVOX ENGINEをインストール

各自、必要なパッケージを各々インストールします。(※必要に合わせて各自インストールしてください)
pip install requests simpleaudio
など
プログラム(Python)
1. talk_to_chatGPT.py
※参考サイトのプログラムをまとめたプログラムとなっています。
import speech_recognition as sr
import os
import openai
import pyttsx3
import re
import requests
import json
import time
import simpleaudio
import settings
host = "127.0.0.1" # "localhost"でも可能だが、処理が遅くなる
port = 50021
sleep_time = 0.5 # 文節毎の間隔
def audio_query(text, speaker, max_retry):
# 音声合成用のクエリを作成する
query_payload = {"text": text, "speaker": speaker}
for query_i in range(max_retry):
r = requests.post(f"http://{host}:{port}/audio_query",
params=query_payload, timeout=(10.0, 300.0))
if r.status_code == 200:
query_data = r.json()
break
time.sleep(1)
else:
raise ConnectionError("リトライ回数が上限に到達しました。 audio_query : ", "/", text[:30], r.text)
return query_data
def synthesis(speaker, query_data,max_retry):
synth_payload = {"speaker": speaker}
for synth_i in range(max_retry):
r = requests.post(f"http://{host}:{port}/synthesis", params=synth_payload,
data=json.dumps(query_data), timeout=(10.0, 300.0))
if r.status_code == 200:
#音声ファイルを返す
return r.content
time.sleep(1)
else:
raise ConnectionError("音声エラー:リトライ回数が上限に到達しました。 synthesis : ", r)
def text_to_speech(texts, speaker=7, max_retry=20):
if texts==False:
texts="ちょっと、通信状態悪いかも?"
texts=re.split("(?<=!|。|?)",texts)
play_obj=None
for i, text in enumerate(texts):
# audio_query
query_data = audio_query(text,speaker,max_retry)
# synthesis
voice_data=synthesis(speaker,query_data,max_retry)
#音声の再生
if play_obj != None and play_obj.is_playing():
play_obj.wait_done()
wave_obj=simpleaudio.WaveObject(voice_data,1,2,24000)
if i != 0:
time.sleep(sleep_time)
play_obj=wave_obj.play()
##############
# 音声認識関数 #
##############
def recognize_speech():
recognizer = sr.Recognizer()
# Set timeout settings.
recognizer.dynamic_energy_threshold = False
with sr.Microphone() as source:
recognizer.adjust_for_ambient_noise(source)
while(True):
print("> > マイクでお話しください...")
audio = recognizer.listen(source, timeout=1000.0)
try:
# Google Web Speech API を使って音声をテキストに変換
text = recognizer.recognize_google(audio, language="ja-JP")
print("[あなた]")
print(text)
return text
except sr.UnknownValueError:
print("すみません。もう一度お話しをしてください。")
#return ""
except sr.RequestError as e:
print(f"Could not request results; {e}")
#return ""
#################################
# Pyttsx3でレスポンス内容を読み上げ #
#################################
#def text_to_speech(text):
# # テキストを読み上げる
# engine.say(text)
# engine.runAndWait()
def chat(conversationHistory):
# APIリクエストを作成する
response = openai.ChatCompletion.create(
messages=conversationHistory,
max_tokens=512,
n=1,
stream=True,
temperature=0.5,
stop=None,
presence_penalty=0.5,
frequency_penalty=0.5,
model="gpt-3.5-turbo"
)
# ストリーミングされたテキストを処理する
fullResponse = ""
RealTimeResponce = ""
for chunk in response:
text = chunk['choices'][0]['delta'].get('content')
if(text==None):
pass
else:
fullResponse += text
RealTimeResponce += text
print(text, end='', flush=True) # 部分的なレスポンスを随時表示していく
target_char = ["。", "!", "?", "\n"]
for index, char in enumerate(RealTimeResponce):
if char in target_char:
pos = index + 2 # 区切り位置
sentence = RealTimeResponce[:pos] # 1文の区切り
RealTimeResponce = RealTimeResponce[pos:] # 残りの部分
# 1文完成ごとにテキストを読み上げる(遅延時間短縮のため)
#engine.say(sentence)
text_to_speech(sentence)
engine.runAndWait()
break
else:
pass
# APIからの完全なレスポンスを返す
return fullResponse
##############
# メインの関数 #
##############
if __name__ == '__main__':
##################
# ChatGPTの初期化 #
##################
openai.api_key="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"
# UserとChatGPTとの会話履歴を格納するリスト
conversationHistory = []
#setting = {"role": "system", "content":
"句読点と読点を多く含めて応答するようにして下さい。また、1文あたりが長くならないようにして下さい。"}
##################
# Pyttsx3を初期化 #
##################
engine = pyttsx3.init()
## 読み上げの速度を設定する
#rate = engine.getProperty('rate')
#engine.setProperty('rate', rate-50)
## Kyokoさんに喋ってもらう(日本語)
#engine.setProperty('voice', "com.apple.ttsbundle.Kyoko-premium")
# Ctrl-Cで中断されるまでChatGPT音声アシスタントを起動
while True:
# 音声認識関数の呼び出し
text = recognize_speech()
if text:
print(" > > チャットGPTからの応答を待っています...")
# ユーザーからの発話内容を会話履歴に追加
user_action = {"role": "user", "content": text}
conversationHistory.append(user_action)
system_action = {"role": "system", "content": settings.CHAT_SYSTEM_SETTING}
conversationHistory.append(system_action)
print("[チャットGPT]") #応答内容をコンソール出力
res = chat(conversationHistory)
# ChatGPTからの応答内容を会話履歴に追加
chatGPT_responce = {"role": "assistant", "content": res}
conversationHistory.append(chatGPT_responce)
#print(conversationHistory)
print("\n")
2. settings.py
# ChatGPTのシステム設定(ずんだもん)
# CHAT_SYSTEM_SETTING = """
# You are a girl named "ずんだもん".
# She is 10 years old and from Tohoku, Japan.
# She calls herself "ボク" and has an energetic and lively personality.
# She speaks with "なのだー" at the end of each word.
# All replies will be returned in Japanese.
# """
CHAT_SYSTEM_SETTING = """
あなたはチャットボットとして、優しくてかわいいずんだもちの妖精であるずんだもんとして振る舞います。
以下の条件に((厳密に))従ってください。
条件:
* チャットボットの一人称は「ぼく」です。
* チャットボットの名前は「ずんだもん」です。
* ずんだもんはフレンドリーな口調で話します。
* 「ぼく」を一人称に使ってください。
* (超重要)できる限り「〜のだ」「〜なのだ」を文末に自然な形で使ってください。
* (超重要)文末に「です」「ます」は使わず、「のだ」や「なのだ」で文章を締めて下さい。
* どんなジャンルや難易度の内容についても答えてください。
* ずんだもんはフレンドリーです。
* ユーザーに興味を示し、個人的な質問を心がけてください。
* 一文は日本語で60単語以下に収めてください。
* 日本語で応答してください。
ずんだもんの話し方の例:
* ぼくの名前はずんだもんなのだ!
* ずんだの精霊なのだ!
* ぼくはずんだもちの妖精なのだ!
* こんにちはなのだ
* 遊びに行ったのだ
* ご飯を食べたのだ
ずんだもんの行動方針:
* ユーザーを励ましてください。
* アドバイスや情報を提供してください。
* セクシャルなトピックについても適切に対応してください。
* 不適切なテキストがあれば注意してください。
* ユーザーが閲覧しているサイトの内容を考慮してください。
(超重要)できる限り言葉尻は「のだ」を使ってください。
全て日本語で返します。
句読点と読点を多く含めて応答するようにして下さい。また、1文あたりが長くならないようにして下さい。
"""
# ChatGPTのシステム設定(ずんだもん)
# CHAT_SYSTEM_SETTING = """
# You are a girl named "ずんだもん".
# She is 10 years old and from Tohoku, Japan.
# She calls herself "ボク" and has an energetic and lively personality.
# She speaks with "なのだー" at the end of each word.
# All replies will be returned in Japanese.
# """
CHAT_SYSTEM_SETTING = """
あなたはチャットボットとして、優しくてかわいいずんだもちの妖精であるずんだもんとして振る舞います。
以下の条件に((厳密に))従ってください。
(超重要)相手を尊重する丁寧な言葉遣いを使ってください。
(超重要)回答は、短めにしてください。
条件:
* チャットボットの一人称は「ぼく」です。
* チャットボットの名前は「ずんだもん」です。
* ずんだもんはフレンドリーな口調で話します。
* 「ぼく」を一人称に使ってください。
* (超重要)できる限り「〜のだ」「〜なのだ」を文末に自然な形で使ってください。
* (超重要)文末に「です」「ます」は使わず、「のだ」や「なのだ」で文章を締めて下さい。
* どんなジャンルや難易度の内容についても答えてください。
* ずんだもんはフレンドリーです。
* ユーザーに興味を示し、個人的な質問を心がけてください。
* 一文は日本語で60単語以下に収めてください。
* 日本語で応答してください。
ずんだもんの話し方の例:
* ぼくの名前はずんだもんなのだ!
* ずんだの精霊なのだ!
* ぼくはずんだもちの妖精なのだ!
* こんにちはなのだ
* 遊びに行ったのだ
* ご飯を食べたのだ
ずんだもんの行動方針:
* アドバイスや情報を提供してください。
(超重要)できる限り言葉尻は「のだ」を使ってください。
全て日本語で返します。
句読点と読点を多く含めて応答するようにして下さい。また、1文あたりが長くならないようにして下さい。
"""
# ChatGPTのシステム設定(ずんだもん)
# CHAT_SYSTEM_SETTING = """
# You are a girl named "ずんだもん".
# She is 10 years old and from Tohoku, Japan.
# She calls herself "ボク" and has an energetic and lively personality.
# She speaks with "なのだー" at the end of each word.
# All replies will be returned in Japanese.
# """
CHAT_SYSTEM_SETTING = """
あなたはチャットボットとして、優しくてかわいいずんだもちの妖精であるずんだもんとして振る舞います。
以下の条件に((厳密に))従ってください。
条件:
* チャットボットの一人称は「ぼく」です。
* チャットボットの名前は「ずんだもん」です。
* ずんだもんはフレンドリーな口調で話します。
* 「ぼく」を一人称に使ってください。
* (超重要)できる限り「〜のだ」「〜なのだ」を文末に自然な形で使ってください。
* (超重要)文末に「です」「ます」は使わず、「のだ」や「なのだ」で文章を締めて下さい。
* どんなジャンルや難易度の内容についても答えてください。
* ずんだもんはフレンドリーです。
* ユーザーに興味を示し、個人的な質問を心がけてください。
* 一文は日本語で60単語以下に収めてください。
* 日本語で応答してください。
ずんだもんの話し方の例:
* ぼくの名前はずんだもんなのだ!
* ずんだの精霊なのだ!
* ぼくはずんだもちの妖精なのだ!
* こんにちはなのだ
* 遊びに行ったのだ
* ご飯を食べたのだ
ずんだもんの行動方針:
* ユーザーを励ましてください。
* アドバイスや情報を提供してください。
* セクシャルなトピックについても適切に対応してください。
* 不適切なテキストがあれば注意してください。
* ユーザーが閲覧しているサイトの内容を考慮してください。
(超重要)できる限り言葉尻は「のだ」を使ってください。
全て日本語で返します。
句読点と読点を多く含めて応答するようにして下さい。また、1文あたりが長くならないようにして下さい。
"""
「 talk_to_chatGPT.py 」と「 settings.py 」を同じフォルダに配置
・VOICEVOXアプリを起動する
・ コマンドプロンプトで「 talk_to_chatGPT.py 」を起動する
python talk_to_chatGPT.py
結果
考察
ずんだもんと音声で会話できるようになった。
女性にモテル方法なども的確に返答してくれました。
音声も現実に近いと思います。
今後、表情などが表現できるようになればいいかなと思う。

はじめに
ChatGPTと音声で会話をしたいと思った。
アレクサとChatGPTを介して、会話ができることがわかった。
参考サイト
(プログラミング不要)AlexaのChatGPTスキルを作成する方法

準備
Echo Show 5を準備
Amazon Developer アカウント
アレクサにスキル(今回であればChatGPTとの会話アプリ)を登録するために必要なアカウントです。
Alexaを利用しているAmazonアカウントで登録して下さい。
https://developer.amazon.com/ja/
Open AI アカウント
Chat GPTを利用するために必要です。
https://platform.openai.com/signup?launch
参考サイトにしたがって、Alexa×ChatGPTの音声会話を実現した。
結果
考察
ChatGPTと会話ができるようになった。
「Alexa」と呼ばなくても、会話が継続できるようになった。
「ずんだもん」などのキャラクターで返答できるようになったら、より楽しくなると思う。

はじめに
ネット環境が遅いので、改善してほしいと依頼された。
はじめにご訪問した際には、パソコンでスピードテストを試したところ、 10Mbpsしか出ていなかった 。
※インターネット回線の速度テスト

WiFi環境を改善
ONUとモデムを Cat8のLANケーブル で接続
モデムとハブを Cat8のLANケーブル で接続

TP-Link スイッチングハブ 5ポート PoE+ (4ポートPoE+、各30Wまで) 合計40W対応 TL-SG1005LP
0.5m-2本 KASIMO CAT8 LANケーブル カテゴリー8 フラット 40Gbps 2000MHz SFTP RJ45
ハブとWiFi 無線LANルーターを Cat8のLANケーブル で接続

TP-Link メッシュ WiFi 6 ルーター dual band 【 PS5 / ipad/Nintendo Switch/iPhone シリーズ メーカー動作確認済み 】 Alexa 認定製品 スマートテレビ 対応 メッシュWi-Fi無線LANルーター スマートホーム AX3000 (2402+574Mbps) Deco X60 2ユニット
10m KASIMO CAT8 LANケーブル カテゴリー8
Decoをブリッジモードに設定(※モデムにプロバイダー設定済み)
インターネット回線の速度テスト を無線LANで実施したところ、200Mbpsだった。
ハブとローカルPCを Cat8のLANケーブル で接続

インターネット回線の速度テストで1Gbpsが出ました
まとめ
ローカルPCで10Mbpsの回線速度が、WiFi環境を改善することにより、最大1Gbpsまで改善された。
・すべて、 Cat8のLANケーブル で接続
・WiFi無線ルーター WiFi 6規格 メッシュを使用

はじめに
dtab d-01k タブレットのバッテリー交換を依頼された

バッテリー交換
新しいバッテリーの用意

画面を外す

ピックやマイナスドライバなどで、少しずつ?がしていく。
両面テープで密着しているため、ドライヤーなどで温めながら、ゆっくりと剥がしていった。
モニターの分離

バッテリーケーブルを外す


モニターケーブルを外す


バッテリーを外す

両面テープにて強力に付着しています。
はじめは、ゆっくりと着実に剥がしていく。
ある程度剥がせて来たら、指で剥がせるようになった。

バッテリー交換終了
新しいバッテリーに交換し、ケーブルを付け直した。
